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Abstract— In remote sensing, it is often challenging to acquire
or collect a large data set that is accurately labeled. This difficulty
is usually due to several issues, including but not limited to the
study site’s spatial area and accessibility, errors in the global
positioning system (GPS), and mixed pixels caused by an image’s
spatial resolution. We propose an approach, with two variations,
that estimates multiple-target signatures from training samples
with imprecise labels: multitarget multiple-instance adaptive
cosine estimator (MTMI-ACE) and multitarget multiple-instance
spectral match filter (MTMI-SMF). The proposed methods
address the abovementioned problems by directly considering
the multiple-instance, imprecisely labeled data set. They learn a
dictionary of target signatures that optimizes detection against
a background using the adaptive cosine estimator (ACE) and
spectral match filter (SMF). Experiments were conducted to test
the proposed algorithms using a simulated hyperspectral data
set, the MUUFL Gulfport hyperspectral data set collected over
the University of Southern Mississippi–Gulfpark Campus, and
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
hyperspectral data set collected over Santa Barbara County,
CA, USA. Both simulated and real hyperspectral target detection
experiments show that the proposed algorithms are effective at
learning target signatures and performing target detection.

Index Terms— Adaptive cosine estimator (ACE), hyperspectral,
multiple instance, multiple target, spectral matched filter, target
characterization, target detection.
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I. INTRODUCTION

HYPERSPECTRAL data are well suited for discrimina-
tion between a target and a background because the

hundreds of narrowbands can be used to identify subtle
spectral shifts caused by materials’ differences in chemistry,
physiology, and structure. However, each pixel measures the
interaction of electromagnetic radiation with multiple surface
constituents, regardless of spatial resolution [1]. Often targets
of interest do not comprise a whole pixel resulting in a
mixed-signal and require subpixel target detection. However,
nearly, all hyperspectral target detectors rely on having an
accurate target spectral signature in advance. Usually, target
signatures are obtained from spectral libraries collected in
either controlled laboratory settings, outdoor handheld spec-
trometer measurements, or pulled manually from a hyperspec-
tral image. Spectra collected in controlled laboratory settings
often do not match atmospheric or lighting conditions present
in the hyperspectral imagery. Outdoor handheld spectrometer
measurements can have similar issues if not collected during
hyperspectral image collection. Both of these methods require
knowing and measuring the majority of materials present in
the imagery.

Often pulling spectra manually from a hyperspectral image
is ideal because spectra capture the current environmental
and lighting conditions. However, this method of developing
spectral libraries can be complicated from many sources but
can be mostly summarized into three categories. First, precise
training labels for targets are often difficult to obtain for
multiple scenarios. For example, a target’s global positioning
system (GPS) coordinates can have errors of several meters or
pixels. As a result, the target’s real location might be several
meters from the measured coordinates. In addition, “pure”
target pixels, or pixels that contain 100% of the target, are
challenging to find on the landscape. Second, the number of
training pixels for a target class is small compared to the
nontarget training pixels. There are often only a few pixels for
target training, especially for hyperspectral images covering a
large spatial area. Finally, because each pixel is an interaction
of multiple surface constituents, many targets are subpixel, and
the targets’ proportion is unknown. These complications can
make obtaining the best-suited target signature difficult, which
will ultimately drive the target detection algorithm’s success.
Spectral libraries developed using an outdoor handheld spec-
trometer would also inherently contain these complications.
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Fig. 1. Simplified positive and negative bagging examples with each square
representing a pixel in an image. (Left) When a target’s GPS location does
not match the target’s pixel location in the imagery. This example represents
the bagging methodology used on the MUUFL Gulfport data set. (Right)
When reference polygons are used for a class and may not have all pixels in
a polygon representing the same class. This example describes the bagging
methodology used on the AVIRIS Santa Barbara data set.

Multiple-instance learning (MIL) can overcome the need to
have precise training labels [2], [3]. MIL only requires the
labeling of positive and negative bags, which are groupings
of pixels. Each bag may contain many pixels, but a bag is
labeled positive if at least one of the pixels belongs to the
target class (see Fig. 1). This framework alleviates the need to
have accurate labels that are inherently challenging to collect.
Since the introduction of MIL, numerous MIL algorithms
have been proposed [4]–[7]. A pair of MIL algorithms known
as the multiple-instance adaptive cosine estimator (MI-ACE)
and the multiple-instance spectral match filter (MI-SMF) have
been used with hyperspectral data and have shown competitive
results with other algorithms in terms of single-target concept
estimation and detection [5]. However, these algorithms only
determine one signature for a target. Most targets contain
enough within-class spectral variability that it is difficult to
capture that variability with a single signature. For example,
if the target is a tree species, then the spectral signatures can
vary significantly between individuals due to differences in
structure, biochemistry, or phenology. An urban target can
contain a lot of spectral variability due to material diversity
(e.g., concrete, asphalt, and paint) that also changes with age.

In this article, we propose the multitarget multiple-instance
adaptive cosine/coherence estimator (MTMI-ACE) and mul-
titarget multiple-instance spectral match filter (MTMI-
SMF) algorithms to extend the MIL framework and learn
multiple-target signatures compared to a single-target signa-
ture [8]. The objective of the MTMI-ACE and MTMI-SMF
algorithms is to learn a dictionary of target representations,
focusing on maximizing the detection of those targets against
a background. Our overarching aim is to demonstrate the
improvements and advantages of these algorithms for hyper-
spectral target detection.

A. Related Work

Two of the earliest proposed MIL algorithms are the diverse
density algorithm [3] and the expectation–maximization with

the diverse density (EM-DD) algorithm [9]. These algorithms
learn a target concept closest to the intersection of the largest
number of positive bag instances while being as far from any
negative bag instances. These algorithms learn a single-target
signature and use the Euclidean distance to measure the
similarity between instances. These two methods introduced
the noisy-OR model that many later MIL algorithms relied
upon [10]. Although foundational, these two methods were
not designed with hyperspectral detection in mind, and other
methods soon outperformed these for hyperspectral applica-
tions.

Another family of algorithms that belong to the MIL frame-
work is the functions of multiple-instance (FUMI) algorithms.
The original FUMI algorithm [11] extends the approach of the
sparsity promoting iterated constrained endmember (SPICE)
algorithm [12]. SPICE is an unsupervised algorithm that learns
the subpixel proportions and endmembers of an unlabeled
data set for unmixing imagery. FUMI extends the SPICE
algorithm by using the labeled data to learn a target’s signature
as well as nontarget endmembers. Variations of FUMI have
been developed, such as convex FUMI (cFUMI) [13] and
extended FUMI (eFUMI) [13]. While cFUMI assumes that
the exact target locations in a training image are known,
the eFUMI algorithm needs only an approximate knowledge of
target locations in training data. eFUMI learns multiple-target
signatures by determining the convex combinations of target
and nontarget signatures using an expectation–maximization
approach. Through this approach, the algorithm focuses on
learning the discriminative features between different target
types, resulting in better target characterization and discrim-
ination. However, eFUMI estimates signatures and does not
discriminate prototypes. In addition, the number of targets and
background signatures is needed to find target signatures that
require domain knowledge of the data set.

The MI-ACE algorithm estimates a single-target signa-
ture that optimizes the widely used adaptive cosine estima-
tor (ACE) subpixel target detector on a training data set
with multiple-instance-style imprecise labels [5]. The MI-SMF
algorithm does the same but using the spectral match fil-
ter (SMF) subpixel target detector. However, these algorithms
assume that a target’s spectral variability can be captured with
a single-target signature [5].

Another recent MIL algorithm is the multiple-instance
hybrid estimator (MI-HE) algorithm. The MI-HE algorithm
learns multiple targets and background signatures that maxi-
mize the probability that positive bags are labeled positive and
negative bags are labeled negative [6]. The objective function
is simplified by only needing to maximize a single instance
from each positive bag. MI-HE makes the noisy-OR model
more flexible by implementing a hyperparameter adjustable
generalized mean to vary the operation between a min and
max operation. In addition, the algorithm solves for a sparsity
vector to support dictionary element diversity. The MI-HE
algorithm also determines multiple-target signatures by using
a data mixing model and optimizing the hybrid subpixel
detector’s response within an MIL framework. The algorithm
iterates between estimating a set of representative target and
nontarget signatures and solving a sparse unmixing problem.
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Although this algorithm performs highly competitively with
other MIL algorithms, the algorithm has a complex number
of hyperparameters and takes significantly longer to train than
other MIL algorithms.

The most recent algorithm added to the MIL framework and
hyperspectral target detection is the multiple-instance learning
for multiple diverse characterizations adaptive cosine estimator
(MILMD-ACE) and multiple-instance learning for multiple
diverse characterizations spectral match filter (MILMD-SMF)
algorithms [4]. This algorithm learns multiple-target concepts
by maximizing the collective dictionary’s detection statistic
across the positive bags while minimizing the detection across
negative instances. A unique aspect of this algorithm is
the assumption that each positive bag is constructed with
multiple-target types, deviating from the traditional MIL
framework. This approach is useful if two targets exist in every
positive bag but not in negative bags.

The algorithms mentioned above have shown success at
determining subpixel target signatures for target detection.
However, every algorithm has limitations. Our proposed
algorithms address four of these common limitations. First,
the MTMI algorithms maximize the dictionary’s detection
statistic with respect to expected target signatures provided
from the training data. Second, the MTMI algorithms do not
assume a set number of target signatures, but instead, learn
the appropriate number of target signatures. The algorithms
mentioned above require that the number of targets, and often
the number of background signatures, is known, which can
be difficult without domain knowledge. Third, the unique-
ness of returned target signatures is adjustable through a
hyperparameter. The uniqueness hyperparameter allows for
the multiple-target signatures to be more similar or more
distinct depending on the data set’s characteristics. Finally,
the introduced algorithms are trained using a dot product in
a transformed data space, which is fundamentally quick to
compute, resulting in an efficient algorithm.

B. Adaptive Cosine Estimator and Spectral Match Filter

The ACE and SMF are detection statistics often used for
hyperspectral subpixel target detection [14]–[17]. ACE per-
forms detection by solely considering spectral shape, whereas
SMF also considers magnitude. Assuming target signature s
and unknown instance x, the ACE and SMF detectors [5] can
be written as

DACE (x, s) = sT WT

||sT WT ||
W(x − µb)

||W(x − µb)|| (1)

DSM F (x, s) = sT WT

||sT WT ||W(x − µb) (2)

W = E− 1
2 UT (3)

where D is the detection response of the given detector,
either ACE or SMF. In (1) and (2), the detection statistics
are shown as the dot product between the target signature and
the unknown sample in a whitened coordinate space. Here,
a translation is done using the mean of the background, µb,
followed by a transformation using the eigenvectors, U, and
eigenvalues, E, of the background covariance. When choosing

which statistic is appropriate for a data set, it is essential to
determine whether the spectral magnitude is necessary for a
target’s discrimination from the background. When a target
has a similar spectral shape to the background but is brighter
or darker (e.g., lower or higher reflectance), the SMF detection
statistic would be appropriate.

II. METHODS

A. Multiple Target MIL

Following the MIL framework, this algorithm assumes that
the data are grouped into bags with bag level labels [2]. With
this, let X = {x1, . . . , xN } be training data with each sample
and xi be a vector with dimensionality D. The data are grouped
into J bags B = {B1, . . . , BJ } with labels, L = {L1, . . . , L J },
where L j ∈ {0, 1}. A bag is considered positive, B+

j , with
label L j = 1, if there exists at least one instance, xi , in bag j
that is from the target class. In addition, a bag is considered
negative, B−

j , with label L j = 0, if all instances in bag j are
from the background class. The number of instances in both
positive and negative bags is variable. In this algorithm, it is
assumed that each positive bag is only required to contain
one instance of a target and is not guaranteed to contain
multiple-target types in each bag. With this assumption, only a
single instance from each positive bag should contribute to the
objective function calculation. The formulation of the objective
function assumes that different target types will exist across
different positive bags.

In this work, the original MI-ACE algorithm’s objective
function has been extended to include multiple-target signa-
tures. K target signatures are in the dictionary, S (4). S is a
matrix containing vectors si , where each si is a target signature
being estimated

S = �
s1, s2, . . . , sK

�
. (4)

The goal of MTMI-ACE and MTMI-SMF is to estimate the
set of target signatures that maximize the detection statistic
for the target instances in each positive bag and minimize the
detection statistic overall negative instances. This is accom-
plished by maximizing the following objective function:

max
S

M+(B, S) − M−(B, S) − Mu(B, S)

s.t. D(sk, sk) = 1. (5)

The objective function is comprised of three terms and
a constraint (5). The first term (6) is the average detection
statistic of the selected instances from each positive bag.
This term also contains the target signatures to be learned.
By including the max operation in the first term, each target
signature will learn a particular target type. This operation is
introduced because it is assumed that every positive bag does
not contain every target type. The dictionary of learned target
signatures will maximize the objective function by individually
maximizing a subset of positive bags

M+(B, S) = 1

N+
�

j :L j =1

max
sk∈S

(D(x∗
j,k, sk)) (6)

where N+ is the number of positive bags and x∗
j,k is the

selected instance from the positive bag B+
j that is most likely
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a target instance in the bag. The selected instance x∗
j,k is

identified as the point in bag j with the maximum detection
statistic given a target signature, sk

x∗
j,k = arg

x j ∈B+
j

max D(x j , sk). (7)

The second term (8) is the average detection statistic of
the negative bag’s instances and the target signatures to be
learned. This term discourages learning any target signature
that is similar to the background. By including the second
summation, each negative bag has an equal weight in the
objective function. Here, N− is the number of negative bags,
and N−

j is the number of instances in negative bag j . Finally,
an outer sum across K targets is included to ensure that each
target concept contributes equally to the objective function

M−(B, S) = 1

K

K�
k=1

1

N−
�

j :L j =0

1

N−
j

�
xi ∈B−

j

D(xi , sk). (8)

The third term, known as the uniqueness term (9), is intro-
duced to encourage the algorithm to learn distinct target signa-
tures by penalizing the algorithm for similar target signatures.
The uniqueness term has a hyperparameter weight, α, which
changes how similar the target signatures can be. The larger
the weight, the more the algorithm will be encouraged to learn
different signatures

Mu(B, S) = α�K
2

� K−1�
k=1

K�
l=k+1

D(sk, sl). (9)

Finally, the constraint, D(sk, sk) = 1, is included to restrict
the algorithm from maximizing the objective function by
learning target signatures of erroneously large magnitude.

The MTMI-ACE and MTMI-SMF algorithms have two
primary steps: initialization and optimization. The initializa-
tion process uses a greedy approach along with clustering
to aid in computation complexity and representative target
diversification. The optimization process learns the number
of needed signatures to describe the target class optimally
while generalizing the signatures considering all of the positive
bags. These steps are described in the following. The algorithm
pseudocode is provided in Algorithm 1.

B. Target Dictionary Initialization

To reduce the initialization process’s computation complex-
ity, the K-means clustering algorithm [18] is used to aid in
target concept initialization. K-means is used by clustering all
of the data, regardless of bag structure, into C clusters. The
cluster centers that maximize the objective function in (5)
are iteratively selected until K signatures have been added
to the target dictionary. In this process, the algorithm is
greedily selecting the next best target concept for initialization.
As long as the number of clusters, C , and the number of
iterations i , remains small, the K-means approach will have
a lower computational cost than searching through all of the
positive instances. Using K-means, the algorithm only needs
to search through C candidates instead of N+ candidates to
initialize a target signature.

Algorithm 1 MTMI-ACE and MTMI-SMF
1: Compute µb, E, and U
2: Subtract µb and whiten X, Equation (3)
3: if ACE then
4: Normalize X
5: end if
6: K-Means cluster instances in positive bags
7: Greedily initialize S, as the cluster centers that maximize

the objective function, Equation (5)
8: repeat
9: Update the set of x∗

j,k for each sk , Equation (7)
10: Determine indicators β+

j,k for each ˆ̂sk , Equation (14)
11: for k = 1 to K do
12: if sum(β+

k ) = 0 then
13: Remove sk from S
14: else
15: Update ˆ̂sk , Equation (10)
16: end if
17: end for
18: until Stopping criterion reached
19: Normalize and de-whiten ˆ̂sk , Equation (15)
20: return all optimized sk as S

C. Target Dictionary Optimization

The target concept update equation is calculated for each
target concept. Each target concept is updated in each opti-
mization iteration until the stopping criteria are reached. In this
manner, the target dictionary is optimized by optimizing the
set of target concepts through each iteration (see Algorithm 1
for details). This solution is closed form. The optimization
will produce the same result given a fixed set of positive
bags, negative bags, and initialized target signatures [5]. This
assumes that no cycles occur during optimization, and the max
number of iterations is not reached. The update equation to
perform target concept optimization is derived by maximizing
the objective function for the target signatures, ˆ̂sk . The deriva-
tion of the update equation is included in Appendix A. The
resulting update equation is

ˆ̂sk =
ˆ̂t���ˆ̂t
��� (10)

where

ˆ̂t = 1

N+
k

�
j :L j =1

β+
j,k

ˆ̂x∗
j,k (11)

− 1

N−
�

j :L j =0

1

N−
j

�
ˆ̂xi ∈B−

j

ˆ̂xi − α

(K − 1)

�
l,l �=k

ˆ̂sl (12)

ˆ̂x = W(x − µb)

||W(x − µb)|| (13)

where

β+
j,k =

⎧⎨
⎩

1 if D
�
x∗

j,k, sk
�

> D
�
x∗

j,l, sl
� ∀l �= k

0 otherwise. (14)
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This update equation is interpretable. The first term is the
average of the selected positive instances assigned to the
same target type as ˆ̂sk . The selected positive instances are
determined by computing the positive bag identifiers β+ for
each target signature. The second term is the average of all
negative instances and can be precomputed. The third term is
the average of all other target signatures. This result is also
intuitive. A learned target signature will be an average of the
target type being optimized, dissimilar from the background,
and pushed away from the other target signatures to encourage
target signature uniqueness. Depending on the application, α
is configurable to allow for more distinct or similar target
signatures. If α is increased, more distinct target signatures are
allowed. Finally, all target signatures are optimized simultane-
ously until the bag identifiers, β+, and each target signature’s
bag representatives, ˆ̂x∗

k , remain the same across subsequent
iterations or the max number of iterations is reached. Finally,
the target concepts are normalized and dewhitened using

sk = tk

||tk|| , tk = W−1ˆ̂sk . (15)

In practice, this optimization is fast and per iteration has a
computational complexity on the order of O(K DN+), where
K is the number of target concepts, D is the dimensionality
of the data, and N+ is the number of positive instances in the
training data.

D. Learning Number of Target Concepts

During optimization, the number of target concepts is esti-
mated iteratively by removing unnecessary target signatures.
Target signatures are removed by observing the bag identifiers,
in (14), for each of the k target signatures during the iterations
of optimization. If all j positive identifiers for the kth target
are 0, then the kth target signature will be dropped from
the set of target signatures S. Namely, the kth signature will
be dropped when the detection similarity between the kth
target signature and all j positive bag representatives, ˆ̂x∗

k ,
is smaller than all other target signatures’ detection similarities
to their corresponding j bag representatives. MTMI-ACE and
MTMI-SMF remove the need for domain-specific knowledge
for how many target signatures may exist while still being
adjustable by changing the value of α to encourage more or
less target signature uniqueness, where a lower α value can
potentially lead to more target signatures to be estimated since
signatures are allowed to be more similar.

III. EXPERIMENTS

In the following, MTMI-ACE and MTMI-SMF are eval-
uated and compared to several MIL framework methods
using simulated data and two real hyperspectral data sets.
The simulated data experiments illustrate the properties of
MTMI-ACE and MTMI-SMF, providing insight into how and
when the methods are effective. The hyperspectral data sets
are included to illustrate how MTMI-ACE and MTMI-SMF
perform in real-world scenarios with two different bagging
methods (see Fig. 1). In this section, we will compare our
proposed algorithms with other MIL algorithms from the liter-
ature, including multiple-instance learning for multiple diverse

characterizations (MILMD) [4], MI-ACE [5], MI-SMF [5],
MI-HE [6], and eFUMI [13]. These algorithms were selected
due to their relevance, prevalence in the literature, or their
recent development.

A. Simulated Data

1) Experimental Data Set: Simulated data were gener-
ated from five spectra selected from the ECOSTRESS Spec-
tral Library [19], formally known as the ASTER Spectral
Library [20]. Those five spectra were from the rock class
(basalt, pyroxenite, verde antique, phyllite, and slate) and had
211 bands ranging from 400 to 2500 nm. The simulated data
set was generated following steps and code detailed in [13]
and [21]. In this experiment, the simulated data set was
created using two target signatures: basalt and verde antique.
All other spectra (three classes) were used as background.
The parameters used to develop the simulated data set were
10 positive bags, 20 negative bags, 500 points in each bag,
250 target points in each positive bag, 0.3 mean target propor-
tion, and 20 signal-to-noise ratio. Two simulated data sets were
generated using those parameters, with one designated for
training and the other for testing. This experimental design was
repeated for ten iterations. For these simulated experiments,
algorithms were evaluated on these data using the area under
the receiver operating characteristic curve (AUC) in which the
value reported is the AUC up to false alarm rate (FAR) of
1×10−3. The results shown are the average AUC and standard
deviation from these ten iterations.

2) Effects of K: The K parameter in the multitarget
multiple-instance algorithm controls the number of initial
target signatures. Too few targets may not capture the spectral
variability in the target’s pixels. A large K parameter slows
down the computation. Often the user does not know what the
appropriate K value is for their data set. In this experiment, all
MTMI-ACE and MTMI-SMF parameters were kept constant
(α = 0.5), whereas the K value was changed from 2, 4, and
8 to 16.

With changing K, the developed target signatures are similar,
and the total returned number of targets was consistent (see
Fig. 2). Some iterations did show a larger number of returned
targets with K equal to 8 and 16, but for most iterations,
the total returned number of targets was 2, indicating the
stability in estimating the number of target signatures. The
target detection performance shown in the receiver operating
characteristic (ROC) curves and AUC values does not show
much variability with changing K.

Another benefit of the MTMI algorithms is the fact that
the returned target signatures are interpretable. The returned
signatures are similar to the original signatures, but with
a few key differences (see Fig. 2). The MTMI algorithms
maximize differences between the targets and the background,
so spectral features that are found beneficial for separation
are exaggerated. For example, the peak in the verde antique
spectra between 1.5 and 2.3 μm is a unique feature of
this class. The returned MTMI target signature reflects this
difference showing elevated reflectance values in this spectral
range. These returned target signatures could link back to
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Fig. 2. MTMI-ACE ROC curves (Top) across the ten data set simulations and changing K values and target signatures from (bottom) highest performing
iteration. The first column shows the target detection results using the original signatures, after whitening, with the two targets in red and blue with background
signatures in gray. The false-positive rate scale is shown as 1 × 10−3.

Fig. 3. MTMI-ACE target signatures from the highest performing iteration across different α values. The first panel shows the original signatures, after
whitening, with the two targets in red and blue with background signatures in gray.

specific biochemistry or physical properties of the target class.
It is often useful in remote sensing applications to know what
wavelengths make a target class different from background
classes.

3) Effects of α: The α parameter controls the similarity or
diversity of target signatures obtained from MTMI-ACE and
MTMI-SMF. A smaller α will allow for more similar target
signatures, whereas a larger α will force target signatures to
be more diverse. Changing the α parameter can significantly
affect returned target signatures depending on the spectral
variability in the data set. In this experiment, all MTMI-ACE

and MTMI-SMF parameters are kept constant (K = 2),
whereas the α value is changed from 0, 0.01, 0.1, 0.5, 1, and
10 to 100.

For this data set, the best α for returning interpretable
target signatures was 0.5 and 1 (see Fig. 3). After a value
of 1, the signatures become noisy and do not reflect any
features from the original signatures. As mentioned above,
the α parameter controls the amount of diversity between
developed signatures. α of 0 does not use the third term of the
objective function and does not encourage diversity among the
multiple targets. As α increases, the target signatures become
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Fig. 4. Two target simulated data set ROC curves for each of the ten data set simulations across the nine target detection algorithms. The false-positive rate
scale is shown as 1 × 10−3. At this range, some of the iterations had a zero true-positive rate.

increasingly different until a threshold is met, and signatures
resemble noise. However, the target detection performance
shown in the ROC curves and AUC values does not show
much variability with changing α. It is essential to examine
the target signatures to ensure that they are making physical
sense and retain confidence in detection results.

In this experiment, α values less than 1 and greater than 0
resulted in optimal performance and interpretability. The
appropriate α is dependent on the spectral differences between
target and background classes. A smaller α would ensure that
developed target signatures would reflect patterns in the data
set for targets that are similar spectrally or exhibit significant
overlap between targets. While not seen in this data set, larger
α can reduce the number of developed target signatures to
maximize diversity. If multiple targets are needed for accurate
detection, smaller α will ensure that multiple-target signatures
will be developed because the signatures are allowed to be
more similar.

4) Target Detection Results: Using the two-target simulated
data set, we compared MTMI with six other multiple-instance
target detection algorithms in the literature. For this exper-
iment, MTMI-ACE and MTMI-SMF parameters were fixed
with α = 1 and K = 4. Although we know that this data
set only has two targets, four potential targets were allowed
to demonstrate that MTMI algorithms return the appropriate
number of targets. This flexibility eases the restrictions on
the user-defined K parameter. Other algorithm parameters are
found in Appendix B.

Fig. 4 shows the ROC curves for the two classes across
algorithms, and Table I shows the average normalized
AUC (NAUC) and standard deviations from the ten data set
simulations. This experiment’s results are more understood

TABLE I

AVERAGE AUC RESULTS, WITH STANDARD DEVIATION IN PARENTHESES,
FOR THE SIMULATED DATA SET WITH TWO TARGETS (BASALT AND

VERDE ANTIQUE). THE BEST RESULTS ARE SHOWN IN BOLD, AND

THE SECOND-BEST RESULTS ARE UNDERLINED

after considering the original target signatures spectral sepa-
rability, as shown in panel 1 of Fig. 2. Compared to the other
spectra, verde antique has a unique spectrum specifically in the
1.5–2.3-μm spectral range, whereas basalt shares more similar
features. The more distinct the target spectrum, the easier it is
for the target detection algorithms to determine the appropriate
target signature. All the algorithms were able to determine
an appropriate signature for verde antique, resulting in higher
accuracy for that target class. However, the main deviation
among algorithm performance happened when the algorithms
tried to determine the appropriate signature for basalt and
could not capture the spectral signature due to the spectral
similarity to the other materials.

MTMI-ACE performs well for detecting basalt and verde
antique compared to many of the other algorithms. Notably,
the NAUC values are good for both target types compared
to MI-ACE, where one target performs significantly better.
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Fig. 5. MUUFL Gulfport data set red/green/blue image and the 57 target
locations.

Looking at the NAUC, it becomes clear that the ability to
determine multiple targets leads to an increase in detection
compared to MI-ACE and MI-SMF, which can only return
one target signature. These algorithms could detect the verde
antique target with high accuracy, but not the basalt target
because only a verde antique target was developed. MI-ACE
returned target signatures similar to verde antique because
it was distinct from the other targets, while basalt was too
similar. Another recently released multiple-target MIL algo-
rithm, MILMD-SMF, also detected the two targets well but
returned target signatures that favored the verde antique target
leading to a decrease mean NAUC for basalt target detection.
MILMD-ACE shows large variability across iterations. These
algorithms were developed with the assumption that both
targets exist in each positive bag instead of the traditional
approach of a single target, which is how this data set was
created. The MI-HE algorithm showed high consistency across
random iterations, whereas many other algorithms showed
high variability in results and learned target signatures.

B. MUUFL Gulfport Data—Single Target

1) Experimental Data Set: The MUUFL Gulfport Hyper-
spectral data set was used to perform experiments on hyper-
spectral data that contained subpixel targets (see Fig. 1).
This data set was collected over the University of South-
ern Mississippi–Gulfpark Campus with 1-m spatial resolution
and 72 bands ranging between 367.7 and 1043.4 nm. This
experiment uses two images (flights 1 and 3) that cover the
same spatial area but were flown approximately 10 min apart.
These images contain 57 human-made targets made of cloth
panels in four different colors: brown (15 panels), dark green
(15 panels), faux vineyard green (12 panels), and pea green
(15 panels). The targets’ spatial location is shown as scattered
points over a red/green/blue image of the scene in Fig. 5. This

data set is a very challenging target detection task as trees
partially or fully occlude many of the targets. Furthermore,
the targets vary in size and could be 0.25, 1, and 9 m2. Thus,
a target that has 0.25 m2 covers at most a 0.25 proportion
of the pixel signature if the pixel falls directly on the target.
However, many of these targets straddle multiple pixels and are
occluded, resulting in a highly mixed, subpixel target detection
task. A bag included all pixels in a 5 × 5 rectangular region
around each ground-truth point. The GPS device used to record
the ground-truth locations had a maximum of 5-m accuracy,
which would result in a 10 × 10 rectangular region. However,
the GPS accuracy on the day of collection was around 2–3 m,
so the size of 5 × 5 was chosen. The remaining area that did
not contain the target class was grouped into one big negative
bag. Two iterations were run in which flight 1 was selected
for training and flight 3 for testing, and vice versa. The target
types were iterated through, and in each iteration, a single-
target type was selected as the positive bags and all other
image pixels were selected as a negative bag. Thus, there are
12–15 positive bags in each training set in this experiment.
For this experiment, algorithms were evaluated on this data
using the NAUC in which the area was normalized out to an
FAR of 1 × 10−3 false alarms/m2 [21].

2) Target Detection Results: As mentioned above,
the MUUFL Gulfport data set represents a challenging
subpixel detection environment due to many trees covering
targets. In addition, these targets are spectrally similar to the
background because they are cotton fabric (which exhibit
vegetation spectral features) and are similar colors (e.g.,
shades of green and brown). All these data set characteristics
result in lower detection results compared to other data
sets. However, it does provide the opportunity to test the
capabilities of the detection algorithms in a challenging
scenario. The MUUFL Gulfport data set NAUC results are
shown in Table II for the two training and testing splits across
flight lines, and Fig. 6 shows the four target ROC curves for
a subset of algorithms.

The MI-ACE algorithm generally performed the best,
demonstrating that a single target was sufficient for accurate
detection in this experiment designed to detect a single target.
However, MTMI-ACE ranked among the highest perform-
ing across the training/testing split, demonstrating that the
algorithm’s multiple-target version maintains similar accuracy.
The MILMD-SMF algorithm, most similar to our proposed
algorithm, did have comparable results to the MTMI algo-
rithm. However, the MILMD-ACE algorithm could not deter-
mine an appropriate target signature for many of the classes.
MI-HE and eFUMI algorithms also performed comparably,
but slightly decreased accuracies. However, these algorithms
took much longer to computationally execute and have more
user-defined parameters that can impact the final results.

C. MUUFL Gulfport Data—Multiple Targets

1) Experimental Data Set: This experiment also leveraged
the MUUFL Gulfport data set, but instead of running target
detection for a single class, it was run with all classes (see
Table III). A bag included all pixels in a 5 × 5 rectangular
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TABLE II

RESULTS FOR THE MUUFL GULFPORT DATA SET FOR THE SINGLE TARGET EXPERIMENT SHOWING THE NAUC IN WHICH THE AREA WAS NORMALIZED

OUT TO AN FAR OF 1 × 10−3 FALSE ALARMS/M2. THE BEST RESULTS ARE SHOWN IN BOLD, AND THE SECOND-BEST RESULTS ARE

UNDERLINED

Fig. 6. MUUFL Gulfport data set ROC curves for a subset of algorithms. (Top row) Results from training with flight line 1 and testing on flight line 3.
(Bottom row) Results from training with flight line 3 and testing on flight line 1. The false-positive rate scale is shown as 1 × 10−3.

region around each ground-truth point. All classes were des-
ignated as positive bags, while the remaining area that did
not contain the target class was grouped into one big negative
bag. Thus, there are 57 positive bags in each training set and
one negative bag in this experiment. Two iterations were run
in which flight 1 was selected for training and flight 3 for
testing, and vice versa. For this experiment, algorithms were
evaluated on this data using the NAUC in which the area was
normalized out to an FAR of 1 × 10−3 false alarms/m2 [21].

2) Target Detection Results: Single-target algorithms, such
as MI-ACE, had higher accuracy for specific targets such as
brown and dark green but suffered on detection of the other
two targets. Multiple-target algorithms, such as MTMI-SMF,
had more consistent accuracy across all targets because they
can return multiple targets capturing more of the spectral vari-
ability present. MILMD-ACE is another multiple-target algo-
rithm that performed better across all targets compared to

single-target algorithms, but it did determine a larger number
of target signatures compared to MTMI algorithms.

D. AVIRIS Santa Barbara Data

1) Experimental Data Set: The Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) Santa Barbara data set was
used to perform experiments on real hyperspectral data that
contained training data in the form of polygons that may
not contain all pure pixels (see Fig. 1). The imagery was
collected with the AVIRIS sensor as part of the HyspIRI Air-
borne Preparatory Campaign on April 16, 2014 [22]. AVIRIS
measures 224 bands of radiance between 360 and 2500 nm
with a full-width at half-maximum of 10 nm [23]. This
experiment uses a spatial subset of imagery from the Santa
Barbara flight box, which includes ten of the 11 flight lines
acquired with a 35◦ northeast–southwest orientation and 18-m
spatial resolution (see Fig. 7). These ten flight lines cover a
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TABLE III

RESULTS FOR THE MUUFL GULFPORT DATA SET FOR THE MULTIPLE TARGET EXPERIMENT SHOWING THE NAUC IN WHICH THE AREA WAS

NORMALIZED OUT TO AN FAR OF 1 × 10−3 FALSE ALARMS/M2. THE BEST RESULTS ARE SHOWN IN BOLD, AND THE SECOND-BEST RESULTS

ARE UNDERLINED. THE S COLUMN DESIGNATES HOW MANY TARGET SIGNATURES WERE DETERMINED BY AN ALGORITHM

Fig. 7. Santa Barbara flight box and the HyspIRI Airborne Preparatory
campaign flight lines used [19].

diverse landscape that is approximately 12 980 km2. For more
information about imagery preprocessing and development
of the training data set, please refer to [19]. The original
training data were collected to classify plant species, but this
study grouped plant species into their plant functional types
(PFTs). This resulted in nine classes of PFTs: annual herb
(AH), deciduous broadleaf tree (DBT), deciduous shrub (DS),
evergreen broadleaf tree (EBT), evergreen broadleaf shrub
(EBS), evergreen needleleaf shrub (ENS), evergreen needleleaf
tree (ENT), rock/soil (RS), and urban (URB). The training data
set comprised of spatial polygons designating where on the
landscape ‘pure’ patches of species existed. These locations
were identified in the field and using AVIRIS and National
Agriculture Imagery Program (NAIP) imagery. However, it is
often challenging to find 100% pure patches of species on the
landscape, so patches having greater than 75% single species
composition were recorded.

Each polygon was treated as a bag, and often, not all of
the polygon’s pixels belonged to the target class. Classes
had a different number of bags, and each bag size was
variable (Appendix B-D). Often in traditional classifiers, these
nontarget pixels will add too much variability and confu-
sion. Data were split into training and testing using fivefold
cross validation. Iterating through each class, all polygons

matching that class label were selected as positive bags,
while all other polygons were chosen as negative bags. For
MTMI-ACE/MTMI-SMF parameters, the background mean
and covariance were calculated from all pixels in the reference
library, the K was 15, and α was 1. For this experiment,
algorithms were evaluated on these data using the AUC in
which the value reported is the AUC up to FAR of 1 × 10−2.
The results shown are the average AUC and standard deviation
from these iterations.

2) Target Detection Results: Overall, PFTs were detected
with high accuracy, considering how much spectral variability
is in each class (see Table IV and Fig. 8). Each of these classes
contains multiple plant species spread across the ten flight
lines, which covered approximately 12 980 km2. This data set
includes spectral variability that is inherent in all plant spectral
data sets, which is caused by differences in properties such
as plant structure, biochemistry, and water status. However,
additional spectral variability is added due to the large spa-
tial extent of this data set. Classes that are spectrally more
homogenous due to the plant species sharing similar plant
properties (e.g., AH and EBT) performed the best. Classes
with more spectral variability due to significant differences
in species (e.g., EBS and ENS) or PFTs are challenging to
map due to open canopies (e.g., ENT) had lower performance.
For example, ENS and ENT classes can have significant
overlap between classes, but MTMI-ACE algorithms could
distinguish the positive and negative bags from each other
and yield appropriate target signatures. On the other hand,
the URB class was easily detected by most algorithms because
it is so different from the negative bags, which in this case,
were mostly vegetation. In this particular data set, spectral
magnitude did not improve target detection, as shown by
MTMI-ACE outperforming MTMI-SMF.

The ability to determine multiple targets for target detection
gave MTMI-ACE and MTMI-SMF a boost in performance
compared to the single-target detection algorithms (MI-ACE
and MI-SMF). The exception to this is the DS and EBT
classes, which had better AUC results using MI-ACE and MI-
SMF. These results demonstrate that even fewer targets could
have been returned using MTMI-ACE and MTMI-SMF for
these classes. In general, MTMI performs consistently well
across all PFT classes, whereas other algorithms had more
variability results across the classes.
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TABLE IV

AVERAGED AUC WITH STANDARD DEVIATION IN PARENTHESES FOR EACH OF THE NINE CLASSES IN THE AVIRIS SANTA BARBARA
DATA SET ACROSS THE DIFFERENT METHODS. THE BEST RESULTS (BASED ON AVERAGE AUC) ARE SHOWN IN BOLD;

THE SECOND-BEST RESULTS ARE UNDERLINED

Fig. 8. AVIRIS Santa Barbara data set ROC curves for three classes (URB: urban, AH: annual herbs, and DS: deciduous shrubs) across the fivefold iterations.
The false-positive rate scale is shown as 1 × 10−2.

The MILMD-ACE algorithm, another multiple-target
multiple-instance algorithms, also performed well when
detecting PFT targets. Average AUC values between MTMI-
ACE, MTMI-SMF, and MILMD-ACE were often very com-
parable with the standard deviations. For example, with the
RS class, the MILMD algorithm performed better based on
average AUC, but once the standard deviation was accounted
for, the results were not different.

The MTMI algorithms outperformed MI-HE and eFUMI.
This data sets difficulty is knowing how many targets are
necessary to capture the spectral variability for high detection
accuracy. In these algorithms, the user specifies how many
targets or background targets are present in the data set. That
exact number is returned, which may not be the optimal
number of targets. The MTMI algorithm’s benefit is that
the user enters a max number of targets, but the algorithm
determines the appropriate quantity for the class using the α
parameter.

IV. DISCUSSION

As demonstrated in the experiments above, MIL for target
detection has shown to be highly suitable for hyperspectral
data applications. However, as many who have worked with
these data sets know, the development of training labels even
at the bag level can be challenging. For example, it is often
difficult to guarantee that a negative bag will not have any
target pixels. In MTMI-ACE and MTMI-SMF’s objective
function, we minimize the effect that these positive instances
may have with the inclusion of the mean in (8), as long as the
total number of positive instances are the minority. While the
contribution of positive instances in negative bags was not
explicitly tested, the AVIRIS Santa Barbara experiment had
a high likelihood of target pixels in negative bags due to the
nature of PFTs across this very diverse landscape with 18-m
spatial resolution imagery. In that experiment, classes were
still detected with sufficient accuracy and did not appear to
reduce detection ability significantly. An experiment testing
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this effect has been done in [6] where the MI-HE, MI-
ACE, and MI-SMF algorithms were found not to be highly
influenced by incomplete background knowledge and the addi-
tion of positive instances in negative bags. However, eFUMI
was confused by these positive instances, and accuracy was
decreased.

Future work with this algorithm should be to thoroughly
test the ability to generate learned target signatures from one
scene and use them for target detection on a new scene or
sensor. Those experiments would increase the applicability
and functionality of the algorithm. When testing this ability,
especially to a new scene, the background statistics must be
consistent with the original data sets background statistics
since the target signatures were developed for maximum
separability from the original background. In addition, these
experiments do not test what effect the size of the training
data has on accuracy. Experiments were compiled with real
hyperspectral data sets, but other applications may not have
as much training, especially when even bag-level labels are
difficult to obtain.

V. CONCLUSION

In this work, the MTMI-ACE and MTMI-SMF algorithms
for MIL problems are proposed and investigated. Both algo-
rithms can learn multiple discriminative target concepts from
ambiguously labeled data. Comprehensive experiments show
that the proposed MTMI-ACE and MTMI-SMF algorithms are
effective in learning discriminative target concepts. These two
algorithms achieved superior performance over other state-
of-the-art MIL algorithms in several experiments that tested
different target detection scenarios.

In addition, MTMI-ACE and MTMI-SMF present a few
advantages over comparison algorithms. First, the appropriate
number of target signatures for a target’s detection is returned,
reducing the need for a user’s knowledge of the target’s
spectral variability. Second, the MTMI-ACE and MTMI-SMF
algorithms do not require that more than one target be present
in each positive bag, increasing the number of applications.
Finally, these algorithms efficiently determine target signatures
compared to other sampling algorithms. Although this article
focuses on hyperspectral target detection, the MTMI-ACE and
MTMI-SMF algorithms follow the general MIL framework,
which can be applied to any domain containing mixed and
ambiguously labeled training data.

APPENDIX A
OPTIMIZATION UPDATE EQUATION DERIVATION

The objective function is written in (17). In (17), the detec-
tion statistic function, D, is expanded out for the ACE statistic
showing the whitened data and inner product. The derivation
in this appendix may be done using the SMF statistic following
the same format except that ˆ̂x would be replaced with x̂:

max
S

1

N+
�

j :L j =1

max
sk∈S

(D(x∗
j,k, sk))

− 1

N−
�

j :L j =0

1

N−
j

�
xi ∈B−

j

D(xi , sk) − α�K
2

� �
k,l,l �=k

D(sk , sl)

s.t. D(sk, sk) = 1 (16)

TABLE V

MODEL PARAMETERS FOR THE SIMULATED
DATA EXPERIMENT

TABLE VI

MODEL PARAMETERS FOR THE MUUFL SINGLE
TARGET EXPERIMENT

TABLE VII

MODEL PARAMETERS FOR THE MUUFL MULTIPLE
TARGET EXPERIMENT

max
S

1

N+
�

j :L j =1

max
ˆ̂sk∈S

�
ˆ̂x∗T

j,k
ˆ̂sk

�

− 1

N−
�

j :L j =0

1

N−
j

�
ˆ̂xi ∈B−

j

�
ˆ̂xT

i
ˆ̂sk

� − α�K
2

� �
k,l,l �=k

�
ˆ̂sT

k
ˆ̂sl

�
s.t. ˆ̂sT

k
ˆ̂sk = 1. (17)

The optimal update equation for each target signature, ˆ̂sk ,
can be solved for using the associated Lagrangian, written in
the following equation:

L = 1
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� − λ

�
ˆ̂sT

k
ˆ̂sk − 1

�
. (18)

The derivative of the Lagrangian with respect to the target
signature is taken and shown in (19). Here, the max operation
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TABLE VIII

MODEL PARAMETERS FOR THE AVIRIS SANTA BARBARA EXPERIMENT

on the first term is expanded out using an indicator function

∂L
∂ ˆ̂sk

= 1
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�
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�
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The positive bag indicator for target signature ˆ̂sk is defined
as

β+
j,k =

�
1 if ˆ̂x∗T

j,k
ˆ̂sk > ˆ̂x∗T

j,l
ˆ̂sl , ∀l �= k

0 otherwise.
(20)

Then, solving for the target signature the update equation
and the Lagrangian multiplier is solved for in the following
equations:
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(21)

λ = ||ˆ̂t||
2

. (22)

Finally, the update equation for the kth target signature with
the Lagrangian multiplier is shown in the following equation:

ˆ̂sk =
ˆ̂t���ˆ̂t
��� where ˆ̂t = 1
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APPENDIX B
PARAMETERS FOR EXPERIMENTS

A. Simulated Data Set

See Table V.

B. MUUFL Gulfport Data Set—Single Target

See Table VI.

C. MUUFL Gulfport Data Set—Multiple Targets

See Table VII.

D. AVIRIS Santa Barbara Data Set

See Table VIII.
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