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ABSTRACT
Traditional methods of developing spectral libraries for un-
mixing hyperspectral images tend to require domain knowl-
edge of the study area and the material’s spectra. In this
paper, we propose using the Multiple Target Multiple In-
stance Adaptive Cosine/Coherence Estimator (Multi-Target
MI-ACE) algorithm to develop spectral libraries that will
capture the same spectral variability as traditional methods
but require less processing time and domain knowledge.
We compared traditional and Multi-Target MI-ACE gener-
ated spectral libraries’ ability to accurately predict sub-pixel
composition using Multiple Endmember Spectral Mixture
Analysis (MESMA). Multi-Target MI-ACE spectral libraries
maintained the same sub-pixel composition accuracy com-
pared to traditional libraries, while significantly reducing
model complexity. Additionally, the Multi-Target MI-ACE
confidence values could be used to constrain MESMA model
complexity and considerably reduce the number of endmem-
ber permutations needed. In summary, Multi-Target MI-ACE
has been found to successfully develop spectral libraries that
capture the full spectral variability compared to traditional
approaches, while reducing MESMA model complexity and
the need for domain knowledge.

Index Terms— endmember extraction, endmember vari-
ability, hyperspectral, unmixing, urban mapping

1. INTRODUCTION

In remote sensing, each pixel measures the interaction of elec-
tromagnetic radiation with multiple surface constituents, re-
gardless of spatial resolution [1]. The presence of surface
mixtures, independent of scale, therefore requires decompo-
sition of measured signals in order to map surface variability.
Methods for doing so primarily rely on linear spectral mixture
analysis (SMA), which assumes that the measured reflected
signal of a mixed-composition pixel is a linear combination
of reflectance from all sub-pixel surfaces, proportional to their
pixel fraction [2].

Accurate SMA requires appropriate endmember selec-
tion, which involves identifying both the number and type
of endmembers [3, 4]. The collective group of endmembers
used to unmix an image is called a spectral library, and ide-
ally captures the full spectral variability of materials present

in the image. For imagery that contain high levels of mate-
rial diversity, such as urban scenes, identifying representative
endmembers can be particularly challenging [5]. Too many
endmembers, or endmembers not representative of image
materials, lead to physically inaccurate proportion estimates
[6]. Many solutions to select the optimal number and type of
endmembers have been developed, but vary in the range of
user input necessary [7, 8].

The first technique developed to address endmember vari-
ability was Multiple Endmember Spectral Mixture Analysis
(MESMA) [9]. In this method, endmembers are allowed to
vary on a per pixel basis and multiple endmembers can repre-
sent each class, which removes the fixed endmember restric-
tion of SMA. MESMA is a computationally complex process,
and therefore requires a small spectral library. Producing this
small library typically requires beginning with a spectral li-
brary of hundreds and iteratively finding the best-fit model of
endmember combinations to assign to each pixel. Although
iterative mixture analysis cycles have been shown to produce
good results, the computational complexity of the method is
a significant drawback when applied on hyperspectral data
[10]. Additionally, MESMA requires domain knowledge of
the study area for the final development of spectral libraries
[5, 11].

Alternatively, we propose a method for developing spec-
tral libraries using Multiple Target Multiple Instance Adap-
tive Cosine/Coherence Estimator (Multi-Target MI-ACE),
an algorithm originally designed for hyperspectral target
detection. The first step of Multi-Target MI-ACE is to iden-
tify representative endmembers that characterize the spectral
variability seen in the imagery. This step is leveraged to
develop Multi-Target MI-ACE spectral libraries by choos-
ing endmembers from a large spectral library. In this paper,
we compare Multi-Target MI-ACE and Iterative Endmem-
ber Selection/Iterative Classification Reduction (IES/ICR)
spectral libraries to assess their ability to retrieve sub-pixel
composition.

2. MULTI-TARGET MI-ACE

The Multi-Target MI-ACE algorithm is an extension of MI-
ACE for the purpose of identifying multiple targets [12]. The
objective of the Multi-Target MI-ACE algorithm is to learn a



dictionary of class representations with the focus of maximiz-
ing detection of those classes against a background [13, 14].
This algorithm fits the Multiple Instance Learning framework
and assumes the data is grouped into bags with bag-level la-
bels [15]. With this, let X = {x1, ...,xN} be training data
with each sample, xi being a vector with dimensionality D.
The data is grouped into J bags B = {B1, ...,BJ} with la-
bels, L = {L1, ..., LJ}, where Lj ∈ {0, 1}.

A bag is considered positive, B+
j , with label, Lj = 1, if

there exists at least one instance, xji, in bag j that is from
the target class, lji = 1, seen in Equation (1). Additionally,
a bag is considered negative, B−j , with label Lj = 0, if all
instances in bag j are from the background class, lji = 0,
seen in Equation (2). The number of instances in both positive
and negative bags is variable.

if Lj = 1, ∃xji ∈ B+
j s.t. lji = 1 (1)

if Lj = 0, ∀xji ∈ B−j , s.t. lji = 0 (2)

After data is grouped into bags, the algorithm learns a dic-
tionary of class endmembers, S, that maximizes the objective
function shown in Equation (3).
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HereN+ andN− are the number of positive and negative
bags respectively, N−j is the number of instances in negative
bag j, and sk is the kth class endmember in the dictionary.
x∗j,k is known as the positive bag representative and is the in-
stance in the jth positive bag that is the most similar to the
kth estimated class endmember, sk. This is shown in Equa-
tion (4).

x∗j,k = arg max
xi∈B+

j

D(xi, sk) (4)

D(x, s) represents the ACE detection statistic between an un-
known instance, x and a class endmember, s. The ACE detec-
tion statistic is shown in (5), where x̂ = D−

1
2UT (x − µb),

ŝ = D−
1
2UT s, U and D are the eignenvectors and eigenval-

ues of the background covariance.

DACE(xn, s) = ˆ̂sT ˆ̂x, ˆ̂x =
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ŝ
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There are two steps to the Multi-Target MI-ACE algo-
rithm: initialization and optimization. Initialization maxi-
mizes the objective function (Eq. (3)) using the user defined

max number of endmembers and greedily selects a set of pos-
itive instances. In this paper, the set of targets derived during
the initialization process are called the MT MI-ACE (init).
The second step optimizes the objective function, which is
posed as a lagrangian problem, to the update equation and de-
rive the kth target signature. During optimization, endmem-
bers are removed if found to have no positive bag representa-
tives with a higher ACE confidence relative to that of all other
endmembers. In other words, endmembers are removed if
they do not describe a target class better than other endmem-
bers. The optimized library is a subset of the initialized li-
brary. Multi-Target MI-ACE projects spectra into a whitened
space to determine the best representative targets. In order
to use the original reflectance values instead of projecting the
image into this space, indices of selected endmembers were
tracked and used to pull the matching endmember from the
spectral library. In this paper, the set of targets derived dur-
ing the optimization process are called the MT MI-ACE (opt).
For more information on algorithm are found in [13, 14].

3. EXPERIMENTAL DESIGN

To determine how Multi-Target MI-ACE derived spectral li-
braries compared to traditional approaches, we used a dataset
previously developed for urban fractional cover studies in
Santa Barbara, CA [11]. Hyperspectral image data were
collected with the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor at 18m spatial resolution on August
29, 2014. More details on the collection, sensor, and image
processing are found in [11]. As part of this dataset, 67 frac-
tion validation polygons (180 x 180 m size) were developed to
assess the accuracy of the MESMA products. The fractions of
these polygons were prepared using E-Cognition to classify
1m NAIP imagery and were then manually corrected through
comparison to August 2014 Google Earth imagery. Addi-
tionally, this dataset has a spectral library that was extracted
from imagery using polygons that contained pure spectra of
materials. A total of 3288 unique endmembers were obtained
from the 237 pure polygons to form the reference library that
contained endmembers for six classes: turfgrass, tree, paved,
roof, non-photosynthetic vegetation (NPV), and soil. Since
MESMA runs all permutations of class endmembers, fur-
ther reduction of this library is necessary for computational
efficiency.

One approach for reducing library size is a combination of
Iterative Endmember Selection (IES) [16] and Iterative Clas-
sification Reduction (ICR) [5, 11]. IES is an automated algo-
rithm that selects representative spectra of the larger reference
library by comparing all pairs of endmembers and selecting
those that have the highest kappa value for classifying the en-
tire reference library. To optimally capture the variability of
each reference library, ICR is run to maximize class separabil-
ity by classifying the image using MESMA constrained to one
endmember per pixel. Results are visually inspected and end-



members that over or under-map are removed. This process
is repeated until no discernable improvement is found. The
unmixing results from this library are referred to as IES/ICR
in this paper.

In this paper, we propose the use of Multi-Target MI-
ACE to select the best representative endmembers. We used
the same endmember reference library that contains the six
classes and 3288 endmembers. Iterating through each class,
all polygons matching that class label were selected as pos-
itive bags, while all other polygons were chosen as negative
bags. The background mean and covariance were calculated
from all endmembers in the reference library, the initial num-
ber of class endmembers was 20, and α was 1. We developed
two Multi-Target MI-ACE libraries: one using initialized tar-
gets referred to as MT MI-ACE (init) and one using optimized
targets referred to as MT MI-ACE (opt).

We used MESMA to calculate class sub-pixel propor-
tions with each spectral library. MESMA selects the best
fitting model based on maximum and threshold RMSE val-
ues, which we set to 2.5% and 0.7%, respectively. In other
words, a pixel could not be modeled with an RMSE below
2.5% reflectance, and a more complex model would be used
if it improved the RMSE by at least 0.7% [3]. Fractions were
constrained between 0 and 1, no pixel could contain >80%
shade, and the number of endmembers per pixel was limited
to a maximum of three plus shade. MESMA restricts the
overall endmember combination to one class representative
per pixel and will not evaluate a possible mixture of two
soil endmembers or two tree endmembers. Lastly, we shade
normalized the MESMA proportions. We used validation
polygon boundaries to extract the total proportion coverage
from MESMA products and compared against validation
polygon proportions.

4. RESULTS

Table 1 shows the number of endmembers selected for each
class across the three libraries. Each library started with the
3288 endmember reference library. The IES/ICR library con-
tained 226 endmembers after IES, then 61 endmembers after
ICR. The MT MI-ACE (init) library yielded a total of 82 end-
members, while the MT MI-ACE (opt) library yielded fewer
than five endmembers per class resulting in a spectral library
of 19 endmembers. The MT MI-ACE (init) spectral library
found a slightly higher number of endmembers for each class
compared to the IES/ICR spectral library, which resulted in a
larger endmember library. Even a library with 20 more end-
members can result in a significant increase in computation
time because MESMA finds all permutations of a class's end-
members for 2, 3, and 4 endmember models. However, the
MT MI-ACE (opt) library found significantly fewer endmem-
bers compared to the other libraries with only three endmem-
bers per class. The user has some control over the size of MT
MI-ACE libraries. They control the number of initialized end-

members and alpha which allows for less endmembers with
distinct signatures or more endmembers with similar signa-
tures.

Unmixing results using MESMA show that MT MI-ACE
spectral libraries perform similar to the IES/ICR spectral li-
brary and none were found to be significantly different (Ta-
ble 2; Figure 1). Both MT MI-ACE libraries performed bet-
ter than the IES/ICR library on NPV, paved, roof, and tree
classes. However, the IES/ICR library significantly outper-
formed for the turfgrass and soil classes. All three libraries
had similar issues such as over predicting turfgrass and soil
proportions at low validation proportions, which are classes
that exhibit brighter reflectance. For proportions less than 0.2,
the algorithms cannot accurately retrieve proportions. MT
MI-ACE (opt) library had only three endmembers per class
but appeared to have captured the spectral variability present
in the imagery due to the comparable unmixing results. Hav-
ing a library of 19 endmembers compared to 61 or 82 signifi-
cantly decreases MESMA processing time.

Class MT MI-ACE
(opt)

MT MI-ACE
(init)

IES/ICR

NPV 2 15 14
Paved 4 20 6
Roof 5 20 17
Soil 2 9 3
Tree 4 7 11
Turfgrass 2 11 10
Total 19 82 61

Table 1. Number of endmembers in each class that were se-
lected for each spectral library.

Class MT MI-ACE
(opt)

MT MI-ACE
(init)

IES/ICR

NPV 0.080 0.081 0.095
Paved 0.064 0.094 0.120
Roof 0.091 0.052 0.095
Soil 0.073 0.057 0.048
Tree 0.073 0.079 0.081
Turfgrass 0.126 0.128 0.057

Table 2. Root mean squared error (RMSE) for proportion pre-
dictions across the three spectral libraries. Bold values desig-
nate MT MI-ACE library classes with lower RMSE than the
IES/ICR library.

In the current implementation of MESMA, unmixing an
image requires the algorithm to iterate through all permuta-
tions of class endmembers in combinations of 2, 3, and 4 end-
member models to find the best fit model. This can result in a
large number of iterations depending on spectral library size.



Fig. 1. Scatterplots comparing validation polygon proportions (n = 67) to MESMA predicted proportions with the root mean
squared error (RMSE) using the three spectral libraries.

Class MT MI-ACE
(opt)

MT MI-ACE
(init)

IES/ICR

NPV 88.1 89.6 88.1
Paved 92.5 92.5 91.0
Roof 79.1 80.6 80.6
Soil 76.1 76.1 76.1
Tree 95.5 95.5 95.5
Turfgrass 83.6 80.6 77.6
Iterations 1.25x106 1.29x108 2.87x1010

Table 3. The percent of pixels that had the classes cor-
rectly classified using confidence values from Multi-Target
MI-ACE. Bold values are classes that were predicted with
higher accuracy than the IES/ICR library.Final row shows the
number of MESMA models using ACE confidence values to
constrain pixel classes.

For example, with this paper's dataset, the IES/ICR library
would run 19881 models to cover all endmember combina-
tions across 1,445,964 pixels for a total of 2.87x1010 itera-
tions. The Multi-Target MI-ACE algorithm can not only be

used to develop spectral libraries but also constrain the num-
ber of iterations necessary to unmix with MESMA. For each
pixel in an image, the Multi-Target MI-ACE algorithm gen-
erates a confidence value (between -1 and 1) for each end-
member, indicating the likelihood that a pixel contains an
endmember or combination of endmembers. We selected all
endmembers with a positive confidence value and used them
to determine which classes are present in a pixel. The con-
fidence values predicted which classes each pixel contains as
accurately as MESMA (Table 3). By applying these confi-
dence values, MEMSA iterations can be constrained only to
run class endmember combinations that are present in a pixel
rather than all endmember combinations, which dramatically
reduces the number of permutations for an image. Using these
constraints and the IES/ICR library, the number of MESMA
iterations would decrease from 2.87x1010 to 1.29x108 using
confidence values from the initialized library and 1.25x106

using the optimized library confidence values.

5. CONCLUSIONS

In this paper, we explored the potential for Multi-Target MI-
ACE to generate spectral libraries capable of quantifying sub-



pixel fractional cover with accuracy similar to, or better than,
manually intensive IES/ICR developed spectral libraries. The
optimized MT MI-ACE library contained only 18 endmem-
bers, yet captured the spectral variability across the image
with comparable performance to the IES/ICR library with 61
endmembers. IES/ICR libraries require significant user effort
and domain knowledge. On the other hand, Multi-Target
MI-ACE does not require domain knowledge and quickly
develops a spectral library that yields comparable results.
The MT MI-ACE spectral libraries did not perform as well
with turfgrass and soil classes but did perform better with
materially-variable classes (e.g., paved, roof) that are noto-
riously difficult to map at sub-pixel scales. In addition to
developing spectral libraries, Multi-Target MI-ACE could
be used to constrain MESMA models by specifying which
classes are present in pixels, significantly decreasing process-
ing time. In summary, Multi-Target MI-ACE can be used
to efficiently develop spectral libraries that capture spectral
variability and retrieve accurate sub-pixel proportions.
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